Five years of phenology observations from a mixed-grass prairie exposed to warming and elevated CO2
نویسندگان
چکیده
Atmospheric CO2 concentrations have been steadily increasing since the Industrial Era and contribute to concurrent increases in global temperatures. Many observational studies suggest climate warming alone contributes to a longer growing season. To determine the relative effect of warming on plant phenology, we investigated the individual and joint effects of warming and CO2 enrichment on a mixed-grass prairie plant community by following the development of six common grassland species and recording four major life history events. Our data support that, in a semi-arid system, while warming advances leaf emergence and flower production, it also expedites seed maturation and senescence at the species level. However, the additive effect can be an overall lengthening of the growing and reproductive seasons since CO2 enrichment, particularly when combined with warming, contributed to a longer growing season by delaying plant maturation and senescence. Fostering synthesis across multiple phenology datasets and identifying key factors affecting plant phenology will be vital for understanding regional plant community responses to climate change.
منابع مشابه
Cheatgrass is favored by warming but not CO2 enrichment in a semi-arid grassland.
Elevated CO2 and warming may alter terrestrial ecosystems by promoting invasive plants with strong community and ecosystem impacts. Invasive plant responses to elevated CO2 and warming are difficult to predict, however, because of the many mechanisms involved, including modification of phenology, physiology, and cycling of nitrogen and water. Understanding the relative and interactive importanc...
متن کاملLong-term exposure to elevated CO2 enhances plant community stability by suppressing dominant plant species in a mixed-grass prairie.
Climate controls vegetation distribution across the globe, and some vegetation types are more vulnerable to climate change, whereas others are more resistant. Because resistance and resilience can influence ecosystem stability and determine how communities and ecosystems respond to climate change, we need to evaluate the potential for resistance as we predict future ecosystem function. In a mix...
متن کاملInvasive forb benefits from water savings by native plants and carbon fertilization under elevated CO2 and warming.
As global changes reorganize plant communities, invasive plants may benefit. We hypothesized that elevated CO2 and warming would strongly influence invasive species success in a semi-arid grassland, as a result of both direct and water-mediated indirect effects. To test this hypothesis, we transplanted the invasive forb Linaria dalmatica into mixed-grass prairie treated with free-air CO2 enrich...
متن کاملLitters of photosynthetically divergent grasses exhibitdifferential metabolic responses to warming and elevated CO2
Climatic stress such as warming would alter physiological pathways in plants leading to changes in tissue chemistry. Elevated CO2 could partly mitigate warming induced moisture stress, and the degree of this mitigation may vary with plant functional types. We studied the composition of structural and non-structural metabolites in senesced tissues of Bouteloua gracilis (C4) and Pascopyrum smithi...
متن کاملFlowering phenology in a species-rich temperate grassland is sensitive to warming but not elevated CO2.
* Flowering is a critical stage in plant life cycles, and changes might alter processes at the species, community and ecosystem levels. Therefore, likely flowering-time responses to global change drivers are needed for predictions of global change impacts on natural and managed ecosystems. * Here, the impact of elevated atmospheric CO2 concentration ([CO2]) (550 micromol mol(-1)) and warming (+...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2016